170

Stereoselective Synthesis of (*E*)-2-(1-Hydroxyalkyl)alk-2-enenitriles *via* (*Z*)-1-Cyanoalk-1-enyl Anion Intermediates

Yoshiro Sato* and Kyoko Hitomi

Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467. Japan

Fluoride ion-induced desilylation of (E)-2-trimethylsilylalk-2-enenitriles affords (Z)-1-cyanoalk-1-enyl anion intermediates, which are trapped by carbonyl compounds to give (E)-2-(1-hydroxyalkyl)alk-2-enenitriles with 100% retention of the configuration.

Alkenylsilanes are versatile synthetic intermediates, which react with a variety of electrophiles, undergoing desilylation with retention of stereochemistry.¹ We recently reported on the highly stereoselective synthesis of (E)-2-trimethylsilylalk-2enenitriles (2) from aldehydes (1).² Electrophile-induced desilylation of (2), employing H⁺ or RCOCl/AlCl₃ was unsuccessful, but desilylation with an appropriate nucleophile for silicon (OH⁻ or F⁻) took place readily to give (Z)-alk-2-

Scheme 1. i, $(Me_3Si)_2C=C=N-SiMe_3$, BF_3 : Et_2O , C_8H_6 ; ii, Bu^n_4NF , tetrahydrofuran (THF), -15 to -20 °C; iii, R^2COR^3

enenitriles in a moist solvent. This suggested that the desilylation of (2) proceeded via a (Z)-1-cyanoalk-1-enyl anion intermediate (3), and we now report the reactions of (3) with carbonyl electrophiles.

Tetra-n-butylammonium fluoride (1.1 equiv., 0.2 M THF solution, dried over molecular sieves 4A) was added dropwise to a solution of (2) (1 equiv.) and a carbonyl compound (1.1

Table 1. Yields of (E)-2-(1-hydroxyalkyl)alk-2-enenitriles (4)^a from (E)-2-trimethylsilylalk-2-enenitriles (2)^b and the carbonyl compounds R²COR³.

R1	R ²	R ³	% Yield (isolated)
n-Heptyl	Me	н	70
	Ph	Ĥ	81
	Me	Me	22
	Ph	Me	33°
Et(Bu ⁿ)CH	Me	н	76
	Ph	н	79
Cyclohexyl	Me	н	75
	Ph	н	74
Ph	Me	н	68
	Ph	н	72

^a Satisfactory spectral and analytical data were obtained for all products. ^b Pure (E)-isomers were used. ^c G.l.c. yield.

equiv.) listed in Table 1, in THF at -15 to -20 °C. Stirring was continued at the same temperature for 0.5 h and at room temperature for 0.5 h. Normal work-up followed by distillation gave high yields (except for two ketones) of the substitution products (*E*)-2-(1-hydroxyalkyl)alk-2-enenitriles (4), accompanied by a small amount of desilylated products, (*Z*)-alk-2-enenitriles (ca. 15%). The 100% (*E*)-stereochemistry of (4) was confirmed by ¹³C n.m.r. [³J(CN-H^{β}) = 10—15 Hz] and ¹H n.m.r. spectral and g.l.c. (Triton X-305) analyses.

Thus we conclude that the formation of (4) proceeds via (3)

which retains its original configuration under the reaction conditions.

Received, 24th November 1982; Com. 1348

References

- 1 For reviews of electrophilic substitution of alkenylsilanes, see T. H. Chan and I. Fleming, *Synthesis*, 1979, 761; E. Colvin, 'Silicon in Organic Synthesis,' Butterworths, London, 1981.
- 2 Y. Sato and Y. Niinomi, J. Chem. Soc., Chem. Commun., 1982, 56.